LATTICE POINTS AND LIE GROUPS. I

BY

ROBERT S. CAHN (1)

ABSTRACT. Assume that G is a compact semisimple Lie group and $\mathfrak G$ its associated Lie algebra. It is shown that the number of irreducible representations of G of dimension less than or equal to n is asymptotic to $kn^{a/b}$, where a = the rank of $\mathfrak G$ and b = the number of positive roots of $\mathfrak G$.

Let G be a simple, compact or complex, simply connected Lie group and \mathfrak{F} its associated Lie algebra. If G is compact a representation is a real analytic group homomorphism $f\colon G\to GL(V)$ where V is a complex vector space. If G is complex a representation is a complex analytic group homomorphism $f\colon G\to GL(V)$. In either case f will be called irreducible if V has no nontrivial invariant subspaces under the action of f(G). A homomorphism of Lie groups induces a homomorphism of the associated Lie algebras,

$$f^* \colon \mathfrak{G} \to \mathfrak{G}l(V)$$
.

a Lie algebra representation, and f^* will be called irreducible if V has no non-trivial invariant subspaces under the action of $f^*(\mathfrak{F})$. It is seen from this definition that f is irreducible $\longleftrightarrow f^*$ is irreducible. If G is simply connected a Lie algebra representation of \mathfrak{F} induces a group representation of G and we thus have a bijection between irreducible representations of G and \mathfrak{F} . By the dimension of a representation we mean the dimension of V. Identifying conjugate representations we ask, "How many irreducible representations of G (or equivalently \mathfrak{F}) are of dimension f in f in f is simpler when asked of Lie algebras since the structure of the representations is less complex.

The root space decomposition of a simple complex Lie algebra is well known

Received by the editors March 18, 1971 and, in revised form, October 13, 1972.

AMS (MOS) subject classifications (1970). Primary 22E45; Secondary 10E10.

Key words and phrases. Semisimple Lie group, irreducible representation, lattice points, Weyl's character formula.

⁽¹⁾ The results in this paper constitute part of the author's thesis.

120 R. S. CAHN

and is found in [1] and [2]. We let δ be a Cartan subalgebra, δ^* its dual and $\mathfrak{F} = \delta \oplus_a \mathfrak{F}_a$ be the canonical root space decomposition of \mathfrak{F} ,

$$\mathfrak{G}_{\alpha} = \{X \in \mathfrak{G} | [H, X] = \alpha(H)X, H \in \mathfrak{H}\}.$$

 $R = \{\alpha \in \mathfrak{H}^* \mid \mathfrak{G}_{\alpha} \neq 0\}$ is called the set of roots. A subset of R, $\{\alpha_1, \dots, \alpha_{a_{\mathfrak{G}}}\}$, will be called simple if they are linearly independent, span \mathfrak{H}^* and form an integer basis for R. The dimension of $\mathfrak{H} = a_{\mathfrak{H}}$ is the rank of \mathfrak{G} .

The Killing form is defined by $(X, Y) = \operatorname{Tr}(\operatorname{Ad} X \circ \operatorname{Ad} Y)$. Restricted to \mathfrak{H} it is symmetric and nondegenerate. (,) induces a dual form on \mathfrak{H}^* so we may speak of (α, β) when α and β are roots. Further, there are unique vectors H_{α} , $H_{\beta} \in \mathfrak{H}$ such that $(\alpha, \beta) = \alpha(H_{\beta}) = \beta(H_{\alpha}) = (H_{\alpha}, H_{\beta})$.

If $f^*: \mathfrak{F} \to \mathfrak{F}l(V)$ is a representation it has a weight space decomposition, $V = \bigoplus_{\lambda} V_{\lambda}$, where

$$V_{\lambda} = \{ \nu \neq 0 | f^*(H)\nu = \lambda(H)\nu, \text{ any } H \in \mathfrak{H} \}.$$

If f* is finite dimensional it is necessary that

$$\lambda(H_i) = \lambda(2H_{\alpha_i}/(\alpha_i, \alpha_i)) = 2(\lambda, \alpha_i)/(\alpha_i, \alpha_i) \in \mathbf{Z}$$

for any α_i , $i=1,\cdots,a$. If f^* is irreducible there exists a weight λ , called the dominant weight, such that $\lambda \geq \lambda'$ for any other λ' in f^* and $\lambda(H_i) \in \mathbb{Z}^+$, $i=1,\cdots,a$. Furthermore, if $f^{*'}$ is another irreducible representation with λ as dominant weight then f^* is conjugate to $f^{*'}$. Thus we may identify f^* with its dominant weight and we will write π_{λ} for f^* . The lattice of dominant weights is $\mathbb{Z}^+\lambda_1 \oplus \cdots \oplus \mathbb{Z}^+\lambda_a$ where $\lambda_i(H_i) = \delta_{ij}$. The interest of this is that the dimension of π_{λ} is a polynomial in λ . By the Weyl character formula

$$f'_{\mathfrak{G}}(\lambda) = \dim \pi_{\lambda} = \prod_{\alpha>0} (\lambda + \delta, \alpha) / \prod_{\alpha>0} (\delta, \alpha)$$

where $\delta = \frac{1}{2} \sum_{\alpha > 0} \alpha \cdot \delta = \sum \lambda_i$ [1, p. 257], so if λ belongs to the lattice of dominant weights then $\lambda + \delta$ belongs to the lattice of dominant weights. If we change coordinates to $\Lambda = \lambda + \delta = \sum \Lambda_i \lambda_i$ where $\Lambda_i \in \mathbb{R}$, then

dim
$$\pi_{\lambda} = f_{\mathfrak{G}}(\Lambda) = \prod_{\alpha>0} (\Lambda, \alpha) / \prod_{\alpha>0} (\delta, \alpha).$$

The number of irreducible representations of \mathfrak{F} of dimension $\leq n$ is then equal to the number of lattice points, Λ , such that $\Lambda_i > 0$ and $f_{\mathfrak{F}}(\Lambda) \leq n$. We now state

Theorem. Let G be a simply connected, simple, complex or compact Lie group. The number of irreducible representations of G of dimension $\leq n$ is asymptotic to $kn^{a_{\mathbb{S}}/b_{\mathbb{S}}}$; $b_{\mathbb{S}}$ = the number of positive roots of \mathbb{S} .

Proof. We first note that (Λ, α) is a linear homogeneous polynomial in the coefficients of Λ since

$$\left(\sum_{i=1}^{\alpha} X_i \lambda_i, \sum_{i=1}^{\alpha} m_i \alpha_i\right) = \sum_{i=1}^{\alpha} m_i (\lambda_i, \alpha_i) X_i.$$

If e_i , ..., e_a is an orthonormal basis of δ^* and if $M: \lambda_i \to e_i$, then if M^t is the transpose of M with respect to (,)

$$(\Lambda, \alpha) = (M^{-1}M\Lambda, \alpha) = (M\Lambda, (M^{-1})^t\alpha)$$

and MA lies in the regular integer lattice in \mathbf{R}^a . Thus if $L = \sum_{i=1}^a X_i e_i$, $X_i > 0$, and

$$f_{\mathfrak{G}}^{0}(L) = \prod_{\alpha>0} (L, (M^{-1})^{t}\alpha) / \prod_{\alpha>0} (M\delta, M^{-1})^{t}\alpha)$$

then $f_{(y)}^{0}(\Sigma_{i=1}^{a}X_{i}e_{i}) = f_{(y)}(\Sigma_{i=1}^{a}X_{i}\lambda_{i})$ so we may regard $f_{(y)}$ as having asymptotes $e_{i}=0$ and the lattice of weights as the ordinary integer lattice. We now prove a lemma on homogeneous functions.

Lemma 1. Let f be a homogeneous function on \mathbb{R}^a of degree b which is the product of linear forms $\sum m_i x_i$, $m_i \geq 0$. If f = 0 on the planes $x_i = 0$, $i = 1, \dots, a$, and if

$$S(1) = \{x \in \mathbb{R}^a | f(x) \le 1, x_i \ge 0\}$$

has finite volume then the number of lattice points in

$$S(r) = \{x \in \mathbb{R}^a | f(x) \le r, x_i \ge 0\}$$

is asymptotic to $Vol(S(1))r^{a/b}$.

Proof. It is clear that the volume of $S(r) = Vol(S(1))r^{a/b}$. If $x \in S(r)$ then

$$f(x/(r^{1/b})) = (r^{-1/b})^b f(x) = r^{-1} f(x) < 1.$$

Since we are in \mathbb{R}^a the Jacobian of the coordinate change $x \to \alpha x$ is α^a so $\operatorname{Vol}(S(r)) = r^{a/b}\operatorname{Vol}(S(1))$. We will be done if the number of lattice points in $S(r) \sim \operatorname{Vol}(S(r))$. To see this, draw a unit a-cube at every lattice point of S(r), w, with vertices at w, $w + e_i$ any i. Call the union of these cubes $\overline{L}(r)$; a set which will contain $S(r) \cap \{x_i \ge 1 \text{ all } i\}$ since f will be increasing in each coordinate. Now at each lattice point, w, draw a unit cube with vertices w, $w - e_i$ any i. Call the union of these cubes $\underline{L}(r)$. $\underline{L}(r) \subset S(r)$ and $\operatorname{Vol}(\underline{L}(r)) = \operatorname{Vol}(\overline{L}(r))$. Call $E(r) = S(r) \cap \{x_i \le 1 \text{ some } i\}$. Then

$$L(r) \subset S(r) \subset \overline{L}(r) \cup E(r)$$

which implies |Vol S(r)| - the number of lattice points $| \leq Vol E(r)$. However

Vol
$$E(r) = r^{a/b} \text{ Vol}\{x \in S(1) \mid x_i \le r^{-1/b} \text{ some } i\}$$

and since Vol $S(1) < \infty$ the volume of this latter set $\to 0$ by dominated convergence. Thus Vol E(r) is o(Vol S(r)) and the number of lattice points in S(r) is asymptotic to Vol S(r). \square

We now have a criterion we would like to apply to the polynomials $f_{\mathfrak{G}}$. A canonical example is the algebra A_2 . The positive roots of A_2 are α_1 , α_2 , $\alpha_1 + \alpha_2$ and the polynomial $f_{A_2}^0(x, y) = kxy(x + y)$. We wish to show

$$Vol\{x, y | x > 0, y > 0, kxy(x + y) \le 1\} < \infty$$

or equivalently Vol $A < \infty$ where

$$A = \{x, y | x > 0, y > 0, xy(x + y) < 1\}.$$

We divide A into two subsets, $A_x = A \cap \{x \ge y\}$, $A_y = A \cap \{x \le y\}$. If $(x, y) \in A_x$, $xy(x + y) \le 1$ which implies $x^2y \le 1$.

$$A_x \subset \{(x, y) | x > y > 0, x^2y \le 1\}.$$

 $\operatorname{Vol} A_x \cap \{x \in [0, 1]\} \le \frac{1}{2} \text{ so } \operatorname{Vol} A_x \text{ is finite if}$

$$Vol\{(x, y) | x > y, x > 1, x^2y \le 1\} < \infty.$$

The volume of this set is $\int_1^\infty x^{-2} dx = 1$ so $\operatorname{Vol} A_x \le 3/2$. Similarly, $\operatorname{Vol} A_y \le 3/2$ so $\operatorname{Vol} A < 3$ and the theorem is true for the algebra A_2 . We now extend this method to higher dimensions.

Lemma 2. In \mathbb{R}^a let f(x) be a sum of monomials of degree b. If for every permutation i of $\{1, \dots, a\}$ there exists in f(x) a monomial $X_{i(1)}^{s_1} \cdots X_{i(a)}^{s_a}$ where $s_1 > \cdots > s_a > 0$, then the volume of the set $S(1) = \{x \mid f(x) \leq 1, x_i \geq 0\}$ is finite.

Remark. From Lemma 1 this implies $Vol S(r) = Vol S(1)r^{a/b}$.

Proof of Lemma 2. We proceed by induction. If a=2 we have monomials $X_1^{s_1}X_2^{s_2}$ and $X_1^{s_2}X_2^{s_1}$, $s_1 > s_2$, $s_1' > s_2'$. Again partitioning S(1) into A_x and A_y we see

Vol
$$A_x \le \frac{1}{2} + \int_{1}^{\infty} x^{-s_1/s_2}$$

= $\frac{1}{2} + (s_1/s_2 - 1)^{-1} < \infty$ since $s_1 > s_2$.

Similarly Vol $A_y \le \frac{1}{2} + (s_1'/s_2' - 1)^{-1}$.

Now assume the lemma true for a-1. Partition S(1) into the sets

$$A_{i_1}, \dots, i_a = S(1) \cap \{x_{i_1} \ge \dots \ge x_{i_a}\}.$$

We wish to show Vol $A_{i_1}, \dots, i_n \le \infty$ for any i. As before

$$A_{i_1,\ldots,i_a} \subset \{x \mid x_{i_1} \geq \cdots \geq x_{i_a}, x_{i_1}^{s_1} \cdots x_{i_a}^{s_a} \leq 1\}.$$

If $x_{i_1} \ge 1$ a cross-section of this set at x_{i_1} is the set

$$\{(x_{i_2}, \ldots, x_{i_a}) | x_{i_2} \ge \cdots \ge x_{i_a} \ge 0, x_{i_2}^{s_2} \cdots x_{i_a}^{s_a} \le 1/x_{i_1}^{s_1} \}.$$

By induction and the previous remark the volume of the cross-section = $kx_{i_1}^{-\gamma}$ where $\gamma = s_1(a-1)/(\sum_{i=2}^a s_i)$. The volume of

$$A_{i_1,\dots,i_a} \leq \text{Vol}(A_{i_1,\dots,i_a} \cap \{x_{i_1} \in [0, 1]\}) + \int_{-1}^{\infty} y^{-\gamma} dy.$$

The first set is contained in the unit cube so it has volume ≤ 1 and the integral is finite as long as $\gamma \geq 1$. But $s_1 > s_i \forall i > 1$ so $(a-1)s_1 > \sum_{i=2}^a s_i \Rightarrow \gamma > 1$. \square

The proof of Theorem 1 will be complete if we show the criterion of Lemma 2 applies to the polynomials $f_{(S)}$ for all simple complex Lie algebras.

If
$$\Lambda = \sum_{i=1}^{a} X_i \lambda_i$$
 then for each $\alpha = \sum_{i=1}^{a} m_i \alpha_i$

$$(\Lambda, \alpha) = \sum_{i=1}^{a} m_i(\lambda_i, \alpha_i) X_i.$$

Thus to determine f we must list all the positive roots of \mathfrak{F} in terms of the simple roots. We begin with the A_n algebras.

Lemma 3. The monomial $X_1^{s(1)} \cdots X_n^{s(n)}$ is found in the expansion of f_{A_n} for every permutation s of $(1, \dots, n)$.

Proof. By referring to Serre [2] the positive roots of A_n are $\alpha_1, \dots, \alpha_n$; $\alpha_1 + \alpha_2, \dots, \alpha_{n-1} + \alpha_n$; \dots ; $\alpha_1 + \dots + \alpha_n$. Since $(\lambda_i, \alpha_i) = c$, $f_{A_n} = kX_1 \cdots X_n(X_1 + X_2) \cdots (X_{n-1} + X_n) \cdots (X_1 + \dots + X_n)$. We now apply induction. If n = 2, $f_{A_2} = X_1^2 X_2 + X_1 X_2^2$. Now assume the lemma for n - 1. We write $f_{A_n} = X_n(X_n + X_{n-1}) \cdots (X_1 + \dots + X_n) f_{A_{n-1}}$. Pick an arbitrary permutation s. Then s(n) = j. By induction $X_1^{s(1)} \cdots X_{n-1}^{s(n-1)}$ occurs in $f_{A_{n-1}}$ where

$$s(i)' = \begin{cases} s(i) & \text{if } s(i) < j, \\ s(i) - 1 & \text{if } s(i) > j. \end{cases}$$

Multiply this monomial by X_n in the first j factors $X_n, \dots, (X_n + \dots + X_{n+j-1})$. Now pick the least i such that s(i)' < s(i). Multiply the monomial by X_i in $(X_1 + \dots + X_n)$. Then pick the next i' such that s(i') < s(i')' and multiply by X_i , in $(X_2 + \dots + X_n)$. Since $i' > i \Rightarrow i' \geq 2$, X_i , is found in $(X_2 + \dots + X_n)$. We may thus continue until we have $X_1^{s(1)} \dots X_n^{s(n)}$. \square

Remark. The degree of f_{A_n} is minimal such that we may find monomials

124

 $X_{i(1)}^{s_1} \cdots X_{i(n)}^{s_n}$ where $s_1 > \cdots > s_n > 0$ since $s_n \ge 1$, $s_{n-1} \ge 2$, \cdots , $s_1 \ge n$ so that the degree of $f = \sum_{i=1}^n s_i \ge \sum_{i=1}^n i$ = the degree of f_{A_n}

Lemma 4. The monomial $X_1^{2s(1)-1} \cdots X_n^{2s(n)-1}$ is found in the polynomials f_{B_n} and f_{C_n} for any permutation s.

Proof. The positive roots of B_n are $\alpha_1, \dots, \alpha_n$; $\alpha_1 + \alpha_2, \dots, \alpha_{n-1} + \alpha_n$; \dots ; $\alpha_1 + \dots + \alpha_n$ and $\alpha_i + \dots + \alpha_{j-1} + 2\alpha_j + \dots + 2\alpha_n$ where $i < j \le n$ [2]. $f_{B_n} = k f_{A_n} \prod_{i=1}^{n-1} \prod_{j=i+1}^n (X_i + \dots + X_{j-1} + 2X_j + \dots + 2X_n)$. From Lemma 3 we know the monomial $X_1^{s(1)} \dots X_n^{s(n)}$ is in f_{A_n} . We wish then to show that $X_1^{s(1)-1} \dots \hat{X}_j \dots X_n^{s(n)-1}$ where s(j) = 1 lies in

$$\prod_{i=1}^{n-1} \prod_{j=i+1}^{n} (X_i + \dots + X_{j-1} + 2X_j + \dots + 2X_n).$$

We proceed as follows. There are n-1 factors containing X_1 , $s(1)-1 \le n-1$ so we may choose X_1 in s(1)-1 of these factors. There are (n-1)+(n-2) factors containing X_2 and

$$(s(1)-1)+(s(2)-1)\leq (n-1)+(n-2)$$

so choose X_2 in the next s(2)-1 factors. Thus we may proceed at each stage being able to choose s(i)-1 X_i 's. Multiplying we have the monomial $X_1^{2s(1)-1}X_2^{2s(2)-1}\cdots X_n^{2s(n)-1}$.

For C_n the positive roots are $\alpha_1, \dots, \alpha_n$; $\alpha_1 + \alpha_2, \dots, \alpha_{n-1} + \alpha_n$; \dots ; $\alpha_1 + \dots + \alpha_n$; $\alpha_i + \dots + \alpha_{j-1} + 2\alpha_j + \dots + 2\alpha_{n-1} + \alpha_n$, i < n, $i \le j \le n-1$. The roots are different from B_n but contain the same α_i so the argument is the same. \square

Lemma 5. f_{D_n} contains monomials of descending degrees for $n \ge 6$.

Proof. Referring to Serre the positive roots of D_n are $\alpha_1, \dots, \alpha_{n-1}; \alpha_1 + \alpha_2, \dots, \alpha_{n-2} + \alpha_{n-1}; \dots; \alpha_1 + \dots + \alpha_{n-1}; \alpha_{n-2} + \alpha_n, \dots, \alpha_1 + \dots + \alpha_{n-2} + \alpha_n; \alpha_{n-2} + \alpha_{n-1} + \alpha_n, \dots, \alpha_1 + \dots + \alpha_{n-1} + \alpha_n; \alpha_i + \dots + 2\alpha_j + \dots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n.$ We may write

$$\int_{D_n} = k \int_{A_{n-1}} (X_{n-2} + X_n) (X_{n-3} + X_{n-2} + X_n) \dots (X_1 + \dots + X_{n-2} + X_n)$$

$$\vdots X_n (X_{n-2} + X_{n-1} + X_n) \dots (X_1 + \dots + X_n)$$

$$\prod_{i=1}^{n-3} \prod_{j=i+1}^{n-2} (X_i + \cdots + 2X_j + \cdots + 2X_{n-2} + X_{n-1} + X_n).$$

The bracketed expression is what is needed along with $f_{A_{n-1}}$ to create f_{A_n} except for the missing factor $(X_{n-1} + X_n)$. We compensate by adding the term $(X_{n-3} + 2X_{n-2} + X_{n-1} + X_n)$ to create a function containing every monomial of f_{A_n} . The remaining terms we write as

$$g_{D_n} = \prod_{i=1}^{n-2} (X_i + \dots + X_{n-2} + X_n)$$

$$\prod_{i=1}^{n-4} \prod_{j=i+1}^{n-2} (X_i + \cdots + 2X_j + \cdots + 2X_{n-2} + X_{n-1} + X_n).$$

We know from Lemma 3 that $X_{s(1)}^1 \cdots X_{s(n)}^n$ is found in f_{A_n} for any permutation s. We wish to produce a monomial with descending degrees in the $X_{s(i)}$ in g_{D_n} for any permutation s. There are two cases. First assume that $s(1) \neq n-1$. Then we will be done if the monomial

$$X_{s(n)}^{n-2} \cdots X_{s(6)}^4 X_{s(5)}^2 X_{s(4)} X_{s(3)} X_{s(2)}$$

is in g_{D_n} . First choose n-2 different X_i from

$$\prod_{i=1}^{n-2} (X_i + \cdots + X_{n-2} + X_n), \quad i \neq n-1, s(1).$$

We then proceed to the second factor. There are n-3 terms containing X_1 so if s(j)=1 we may pick X_1 in j-3 terms. Mimicking Lemma 4 we may continue by picking j'-3 X_2 's; where s(j')=2 and so on to X_{n-2} . The sole difference in the procedure will be that if $j\in\{1,2,3,4\}$ we choose no $X_{s(j)}$'s. After X_{n-2} every term contains X_{n-1} and X_n so we may arbitrarily choose k-2 X_{n-1} 's and k'-3 X_n 's; s(k)=n-1, s(k')=n. We have thus produced the desired monomial belonging to g_{D_n} and multiplying by $X_{s(1)}^1 \cdots X_{s(n)}^n$ we have a monomial with strictly decreasing degrees.

If n-1=s(1) we will be done if

$$X_{s(n)}^{n-3}X_{s(n-1)}^{n-3} \cdots X_{s(6)}^{4}X_{s(5)}^{2}X_{s(4)}X_{s(3)}X_{s(2)}X_{s(1)}$$

is in g_{D_n} . First pick $\{X_{s(n-1)}, \dots, X_{s(2)}\}$ in $\prod_{i=1}^{n-2} (X_i + \dots + X_{n-2} + X_n)$. Then proceed as before choosing j-3 X_1 's, j'-3 X_2 's and so on again skipping $X_{s(1)}, \dots, X_{s(4)}$. Proceed to X_{n-2} and then to X_n . There will be one remaining term which a priori contains X_{n-1} . Multiplying by X_{n-1} from this factor we produce our monomial.

We have proved Theorem 1 for A_n , B_n , C_n and D_n for $n \ge 6$. These are all the complex simple Lie algebras except for the algebras G_2 , F_4 , D_4 , D_5 , E_6 , E_7 and E_8 . In these cases the conditions of Lemma 2 may be verified directly.

We now summarize the results:

Algebra	a y	b.(y)	$c_{\mathbf{G}} = a_{\mathbf{G}}/b_{\mathbf{G}}$
$A_n, n \geq 1$	n	n(n + 1)/2	2/n + 1
$B_n, C_n, n \geq 2$	n	n^2	1/n
$D_n, n \geq 4$	n	n(n-1)	1/n - 1
G_2	2	6	1/3
F ₄	4	24	1/6
E ₆	6	36	1/6
E ₇	7	63	1/9
E_8	8	120	1/15

We now extend our results to semisimple Lie algebras.

Corollary. Let \mathfrak{G} be a semisimple Lie algebra, $\mathfrak{G} = \bigoplus_{i=1}^n \mathfrak{G}_i$, with \mathfrak{G}_i the simple components. If $c_{\mathfrak{G}_1} = \cdots = c_{\mathfrak{G}_s} > c_{\mathfrak{G}_{s+1}} \geq \cdots \geq c_{\mathfrak{G}_n}$, then the number of irreducible representations of \mathfrak{G} of dimension less than or equal to T is asymptotic to $kT^{c_{\mathfrak{G}_1}} \log^{s-1} T$.

Proof. We first assume that \mathfrak{G} has two simple factors, $\mathfrak{G} = \mathfrak{G}_1 \oplus \mathfrak{G}_2$. The irreducible representations of \mathfrak{G} are tensor products of irreducible representations of the simple factors and the dimension of the tensor representation is a product of the dimensions of the factor representations. The number of irreducible representations of \mathfrak{G} of dimension $\leq r$ is $h(r) = \sum_{m,n} \epsilon_Z + \frac{1}{2} \frac{1}{2$

We partition $S = \{x, y \mid xy \le r, x, y \ge 0\}$ into $S_x = S \cap \{x \in [0, r^{1/2}]\}$, $S_y = S \cap \{y \in [0, r^{1/2}]\}$. $S = S_x \cup S_y$ so if we estimate both $h_x(r) = \sum_{(m,n) \in S_x} M_1(m) M_2(n)$ and $h_y(r) = \sum_{(m,n) \in S_y} M_1(m) M_2(y)$ asymptotically, then $h(r) \sim \max(h_x(r), h_y(r))$. Assume $c_{\mathfrak{G}_1} > c_{\mathfrak{G}_2}(c_1)$ and c_2 for brevity); we will deal with $c_1 = c_2$ later. Theorem 1 states $\sum_{i=1}^n M_i(i) \sim \mu_i n^{c_i}$. Thus

$$b_x(r) = \sum_{i=1}^{[r/2]} M_1(i) \sum_{j=1}^{[r/i]} M_2(j).$$

For any ϵ there exists r_2 such that

$$\left| \left(\sum_{j=1}^{L} M_2(j) - \mu_2 L^{c_2} \right) \middle/ \sum_{j=1}^{L} M_2(j) \right| < \epsilon \text{ any } L \ge r_2.$$

Then

$$b_x(r) = \mu_2 r^{c_2} \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} M_1(i) / i^{c_2} + \epsilon' b_x(r)$$

where $|\epsilon'| < \epsilon$ if $r > r_2^2$. Thus

$$b_x(r) \sim \mu_2 r^{c_2} \sum_{i=1}^{[r^{1/2}]} M_1(i)/i^{c_2}.$$

By the Abel summation formula

$$\sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} M_{1}(i)/i^{c_{2}} = \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]-1} \left(\sum_{j=1}^{i} M_{1}(j)\right) (1/i^{c_{2}} - 1/(i+1)^{c_{2}}) + \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} M_{1}(i) \cdot r^{-c_{2}/2}.$$

Now
$$c_2/i^{c_2+1} > 1/i^{c_2} - 1/(i+1)^{c_2} > c_2/(i+1)^{c_2+1}$$
, so

$$\sum_{i=1}^{\left[r^{\frac{1}{2}}\right]-1} \left(\sum_{j=1}^{i} \mathsf{M}_{1}(j)\right) \cdot c_{2}/i^{c_{2}+1}$$

$$> \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]-1} \left(\sum_{j=1}^{i} M_{1}(j)\right) \left(1/i^{c_{2}} - 1/(i+1)^{c_{2}}\right) > \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]-1} \left(\sum_{j=1}^{i} M_{1}(j)\right) \cdot c_{2}/(i+1)^{c_{2}+1}.$$

For any $\epsilon > 0$ there exists r_1 such that

$$\left\| \left(\sum_{j=1}^{L} M_{1}(j) - \mu_{1} L^{c} \right) \right\| \sum_{j=1}^{L} M_{1}(j) < \epsilon \quad \text{any } L \ge r_{1}.$$

If $r \gg r_1^2$, r_2^2

$$\sum_{i=1}^{\left[r^{\frac{1}{2}}\right]-1} \left(\sum_{j=1}^{i} M_{1}(j)\right) \cdot c_{2}/i^{c_{2}+1} = \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]-1} \mu_{1}c_{2}i^{c_{1}-c_{2}-1} + E + A$$

where

$$|E| < \epsilon \sum_{i=r_1}^{\lceil r^{\frac{1}{2}} \rceil - 1} \left(\sum_{j=1}^{i} M_1(j) \right) \cdot c_2 / i^{c_2 + 1}$$

and

$$A = \sum_{i=1}^{r_1} \left(\sum_{j=1}^{i} M_1(j) - \mu_1 i^{c_1} \right) \cdot c_2 / i^{c_2 + 1}.$$

$$\begin{split} & [r^{\frac{1}{2}}]^{-1} \sum_{i=1}^{n} \mu_1 c_2 i^{c_1 - c_2 - 1} \sim \mu_1 c_2 \int_{1}^{[r^{\frac{1}{2}}]} {}^{-1} x^{c_1 - c_2 - 1} dx \\ & = \mu_1 c_2 / (c_1 - c_2) x^{c_1 - c_2} \Big|_{1}^{r^{\frac{1}{2}} - 1} = k r^{(c_1 - c_2)/2} + k'. \end{split}$$

Also

$$\sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} M_{1}(i) \cdot r^{-c_{2}/2} = k_{0} r^{(c_{1}-c_{2})/2} + E'$$

where $|E'| < \epsilon \sum_{i=1}^{[r^{1/2}]} M_1(i) \cdot r^{-c_2/2}$. Thus

$$\sum_{i=1}^{\lfloor r^{1/2} \rfloor} M_1(i)/i^{c_2} = (k+k_0)r^{c_1-c_2/2} + (k'+A) + (E+E').$$

From this

$$(1+2\epsilon)b_{x}(r) > (k+k')r^{c_1+c_2/2} + (k'+A)r^{c_2} > (1-2\epsilon)b_{x}(r).$$

Thus $b_x(r) \sim cr^{c_2} + c'r^{c_1+c_2}$. Similarly $b_y(r) \sim \mu_1 r^{c_1} \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} M_2(i)/i^{c_1}$. But in this case $\sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} M_2(i)/i^{c_1}$ is asymptotic to a constant. To see this

$$\sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} \mathsf{M}_{2}(i)/i^{c_{1}} = \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]-1} \left(\sum_{j=1}^{i} \mathsf{M}_{2}(j)\right) (1/i^{c_{1}} - 1/(i+1)^{c_{1}}) + \sum_{j=1}^{\left[r^{\frac{1}{2}}\right]} \mathsf{M}_{2}(j)r^{-c_{1}/2}.$$

$$\sum_{j=1}^{x} M_{2}(j) \text{ is } O(x^{c_{2}}) \text{ and } (1/i^{c_{1}} - 1/(i+1)^{c_{1}}) < c_{1}/i^{c_{1}+1}, \text{ so}$$

$$\sum_{j=1}^{\lfloor r^{\frac{1}{2}} \rfloor} M_{2}(i)/i^{c_{2}} \le k \int_{1}^{r^{\frac{1}{2}}} x^{c_{2}-c_{1}-1} dx + k_{0}r^{c_{2}-c_{1}/2}$$

$$= k/(c_1 - c_2)(1 - r^{c_2 - c_1/2}) + k_0 r^{c_2 - c_1/2}.$$

But $c_2-c_1 < 0$ so the above sum is $\leq 2k/(c_1-c_2)$ if r is sufficiently large and $\lim_{r\to\infty} \sum_{i=1}^r \mathsf{M}_2(i)/i^{c_1}$ exists and is equal to k'. Thus $b_y(r) \sim k' r^{c_1}$ and $b(r) \sim b_y(r)$.

This settles the case of $^{\mathfrak{G}}=\bigoplus_{i=1}^{n}^{\mathfrak{G}}{}_{i}$ where $c_{1}>c_{i}$, i>1. By the above argument $^{\mathfrak{G}}{}_{1}\oplus ^{\mathfrak{G}}{}_{2}$ has asymptotically $k'n^{c_{1}}$ irreducible representations of dimension $\leq n$. By iteration $(^{\mathfrak{G}}{}_{1}\oplus ^{\mathfrak{G}}{}_{2})\oplus ^{\mathfrak{G}}{}_{3}$ still has $\sim k''n^{c_{1}}$ irreducible representations and so on. This leaves the case of $c_{1}=\cdots=c_{s}$. Let $^{\mathfrak{G}}{}_{3}=\cdots=c_{s}$. Let $^{\mathfrak{G}}{}_{4}=\cdots=c_{s}=c_{s}$. Let $^{\mathfrak{G}}{}_{5}=\cdots=c_{s}=c_{s$

$$b(r) = b_x(r) + b_y(r) - \sum_{i,j \in S_x \cap S_y} M_1(i)M_2(j)$$

and the latter sum equals

$$\sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} \mathsf{M}_{1}(i) \mathsf{M}_{2}(j) = \sum_{i=1}^{\left[r^{\frac{1}{2}}\right]} \mathsf{M}_{1}(i) \cdot \sum_{j=1}^{\left[r^{\frac{1}{2}}\right]} \mathsf{M}_{2}(j)$$

which is $O(r^{c_1})$ so that $b(r) \sim kr^{c_1} \log r$. Taking $\mathfrak{G} = (\mathfrak{G}_1 \oplus \mathfrak{G}_2) \oplus \mathfrak{G}_3$ we arrive at the integral

$$\int_{1}^{\left[r^{\frac{1}{2}}\right]} (\log x)/x \, dx = \frac{1}{8} \log^{2} r.$$
 So $b_{x}(r) \sim kr^{c_{1}} \log^{2} r$, $b_{y}(r) \sim k' r^{c_{1}} \log^{2} r$, $\sum_{i,j \in S_{x} \cap S_{y}} M_{1}(i) M_{2}(j)$ is $O(r^{c_{1}} \log r)$ and $b(r) \sim k_{0} r^{c_{1}} \log^{2} r$. Continuing to the case $\mathfrak{G} = \bigoplus_{i=1}^{s} \mathfrak{G}_{i}$ we have $b(r) \sim kr^{c_{1}} \log^{s-1} r$ and our corollary is proven. \square

BIBLIOGRAPHY

- 1. N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 31 #2354.
- 2. J.-P. Serre, Algèbres de Lie semi-simples complexes, Benjamin, New York, 1966. MR 35 #6721.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FLORIDA 33124